

Pymarketcap’s documentation

User's guide

	Install
	From Pypi

	From source

	Known install issues

	Usage
	Basic examples

	Reference
	pymarketcap.core

	pymarketcap.pymasyncore

	pymarketcap.errors

Developers's guide

	Contributing
	Known issues and enhacements

	Basic guidelines

	Basic benchmarking

	How does pymarketcap works in depth?

	Contributors
	Pull requesters

	Bug hunters

	Testing

	Changelog
	4.1.0 (in process)

	4.0.0

	3.9.0

	3.3.0

Install

From Pypi

You need to install cython [http://cython.readthedocs.io/en/latest/src/quickstart/install.html] before pymarketcap. Try: pip3 install Cython and then:

pip3 install pymarketcap

	On Windows will be used urllib library to make synchronous requests and on Linux/Mac will be build against libcurl [https://curl.haxx.se/docs/install.html] C library. You can control this (see below):

From source

git clone https://github.com/mondeja/pymarketcap.git
cd pymarketcap
pip3 install -r requirements.txt
python setup.py install

	To force installation with libcurl, use --force-curl in last command.

	To install with urllib, use --no-curl.

Known install issues

pymarketcap/core.c:16:20: fatal error: Python.h: No such file or directory

	Solution (Linux): sudo apt-get install python3-dev

pymarketcap/curl.c:581:23: fatal error: curl/curl.h: No such file or directory

	Solution (Linux): sudo apt-get install libcurl4-openssl-dev

Usage

Check out complete live demos hosted at Binderhub [https://mybinder.org/v2/gh/mondeja/pymarketcap/master?filepath=docs%2Fsync_live.ipynb].

Basic examples

Synchronous Interface

from pymarketcap import Pymarketcap
cmc = Pymarketcap()

cmc.exchanges()

Asynchronous Scraper

import asyncio
from pymarketcap import AsyncPymarketcap

async def main():
 async with AsyncPymarketcap() as apym:
 async for currency in apym.every_currency():
 print(currency)

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())

Reference

pymarketcap.core

	
class pymarketcap.core.Pymarketcap

	Synchronous class for retrieve data from https://coinmarketcap.com.

	Parameters

	
	timeout (int [https://docs.python.org/3/library/functions.html#int], optional) – Set timeout value for requests.
As default 20.

	debug – (bool, optional): Show low level data in get requests.
As default, False.

	proxy_addr (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], optional) – Proxy to use with Pymarketcap.
As default, b"".

Coinmarketcap API

	
listings()

	List all criptocurrencies with their ids, names, symbol
and website slug.

	Returns (dict):

	Coinmarketcap API raw response.

	
stats()

	Get global cryptocurrencies statistics.

	Parameters

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – return 24h volume, and
market cap in terms of another currency.
See ticker_badges property to get valid values.
As default "USD".

	Returns (dict):

	Global markets statistics on a raw response.

	
ticker()

	Get currencies with other aditional data.
Only returns 100 currencies in each request. Use
pymarketcap.Pymarketcap.ticker_all() method
for retrieve all currencies navegation through API
pagination.

	Parameters

	
	currency (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Specify a currency to return data,
that can be a name, symbol, id or
website_slug fields from
pymarketcap.core.Pymarketcap.cryptocurrencies
property. If you dont specify a currency, returns data
for all in coinmarketcap. As default, None.

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Allows to convert prices, 24h volumes
and market capitalizations in terms of one of badges
returned by ticker_badges property.
As default, "USD".

	Returns (dict):

	Data from all currencies or a currency from coinmarketcap.

	
cryptocurrencies

	Return all cryptocurrencies listed at coinmarketcap.
This is the cached version of public API listings method
but without low level fields like "data" and "metadata".

	
ticker_badges

	Badges in which you can convert prices in ticker() method.

Web scraper

	
currency()

	Get currency metadata like total markets capitalization,
websites, source code link, if mineable…

	Parameters

	
	curr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Currency to get metadata. Can be a name,
symbol, id or website_slug fields from
pymarketcap.core.Pymarketcap.cryptocurrencies.

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Currency to convert response
fields total_markets_cap, total_markets_volume_24h
and price between USD and BTC. As default "USD".

	Returns (dict):

	Aditional general metadata not supported by other methods.

	
exchange()

	Obtain data from a exchange passed as argument.
See pymarketcap.core.Pymarketcap.cryptoexchanges
property for obtain all posibles values.

	Parameters

	
	exc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange to retrieve data. Can be a name,
id or website_slug fields from
pymarketcap.core.Pymarketcap.cryptoexchanges.

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Convert prices and 24h volumes in
return between USD and BTC. As default "USD".

	Returns (dict):

	Data from a exchange. Fields: "currency",
"pair", "name", "volume_24h" (total),
"price", "percent_volume", "updated".
"slug", "website_slug", "id",
"volume", "markets".

	
exchanges()

	Get all exchanges in coinmarketcap ranked by volumes
along with other metadata.

	Parameters

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Convert volumes and prices
between USD and BTC. As default "USD".

	Returns (list):

	Exchanges with markets and other data included.

	
cryptoexchanges

	Returns all exchanges listed at coinmarketcap,
as dictionaries with "name", "id" and
"website_slug" keys.

	
historical()

	Get historical data for a currency.

	Parameters

	
	curr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Currency to scrap historical data.
Can be a name, "symbol", id
or website_slug fields from
pymarketcap.core.Pymarketcap.cryptocurrencies.

	start (date, optional) – Time to start scraping
periods as datetime.datetime type.
As default datetime.datetime(2008, 8, 18)().

	end (date, optional) – Time to end scraping periods
as datetime.datetime type. As default
datetime.datetime.now().

	revert (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, return first date
first, in chronological order, otherwise returns
reversed list of periods. As default False.

	Returns (list):

	Historical dayly OHLC for a currency.

	
markets()

	Get available coinmarketcap markets data for a currency.

	Parameters

	
	curr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Currency to get market data.
Can be a name, "symbol", id
or website_slug fields from
pymarketcap.core.Pymarketcap.cryptocurrencies.

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Currency to convert response
fields volume_24h and price between USD
and BTC. As default "USD".

	Returns (list):

	Markets on wich provided currency is currently tradeable.

	
ranks()

	Returns gainers and losers for 1 hour, 24 hours and 7 days.

	Returns (dict):

	A dictionary with 2 keys (gainers and losers) whose values
are the periods "1h", "24h" and "7d".

	
recently()

	Get recently added currencies along with other metadata.

	Parameters

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Convert market_caps, prices,
volumes and percent_changes between USD and BTC.
As default "USD".

	Returns (list):

	Recently added currencies data.

	
tokens()

	Get data from platforms tokens

	Parameters

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Convert "market_cap",
"price" and "volume_24h" values between
USD and BTC. As default "USD".

	Returns (list):

	Platforms tokens data.

Graphs API

Note

The graphs methods can be called also as cmc.graphs.currency(), cmc.graphs.global_cap() and cmc.graphs.dominance(), being cmc a instance of Pymarketcap or AyncPymarketcap classes.

	
_currency()

	Get graphs data of a currency.

	Parameters

	
	curr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Currency to retrieve graphs data.

	start (datetime, optional) – Time to start retrieving
graphs data in datetime type. As default None.

	end (datetime, optional) – Time to end retrieving
graphs data in datetime type. As default None.

	use_auto_timeframe (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use auto time frames same
as fronted API. As default False

	Returns (dict):

	Dict info with next keys: "market_cap_by_available_supply",
"price_btc", "price_usd", "volume_usd":
and "price_platform".
For each value, a list of lists where each one
has two values [<datetime>, <value>]

	
_global_cap()

	Get global market capitalization graphs, including
or excluding Bitcoin.

	Parameters

	
	bitcoin (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Indicates if Bitcoin will
be includedin global market capitalization graph.
As default True.

	start (int [https://docs.python.org/3/library/functions.html#int], optional) – Time to start retrieving
graphs data in datetime. As default None.

	end (optional, datetime) – Time to start retrieving
graphs data in datetime. As default None.

	use_auto_timeframe (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use auto time frames same
as fronted API. As default False

	Returns (dict):

	Whose values are lists of lists with timestamp and values,
a data structure with the keys: "volume_usd" and
"market_cap_by_available_supply".

	
_dominance()

	Get currencies dominance percentage graph

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int], optional) – Time to start retrieving
graphs data in datetime. As default None.

	end (optional, datetime) – Time to start retrieving
graphs data in datetime. As default None.

	use_auto_timeframe (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use auto time frames same
as fronted API. As default False

	Returns (dict):

	Altcoins and dominance percentage values with timestamps.

Utils

	
convert()

	Convert prices between currencies. Provide a value, the currency
of the value and the currency to convert it and get the value in
currency converted rate. For see all available currencies to convert
see currencies_to_convert property.

	Parameters

	
	value (int/float) – Value to convert betweeen two currencies.

	currency_in (str [https://docs.python.org/3/library/stdtypes.html#str]) – Currency in which is expressed the value passed.

	currency_out (str [https://docs.python.org/3/library/stdtypes.html#str]) – Currency to convert.

	Returns (float):

	Value expressed in currency_out parameter provided.

	
download_logo()

	Download a currency image logo providing their size.

	Parameters

	
	curr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Currency name, id, website_slug or symbol
to download.

	size (int [https://docs.python.org/3/library/functions.html#int], optional) – Size in pixels. Valid sizes are:
[16, 32, 64, 128, 200]. As default 128.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Filename for store the logo.
Doesn’t include the extension (will be “.png”).
As default None.

	Returns (str):

	Filename of downloaded file if all was correct.

	
download_exchange_logo()

	Download a exchange logo passing his name or
id or website slug as first parameter and
optionally a filename without extension.

	Parameters

	
	exc (str [https://docs.python.org/3/library/stdtypes.html#str]) – Exchange name, id or website slug
to download.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size in pixels. Valid values are:
[16, 32, 64, 128, 200].

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Filename for store the logo,
without include file extension (will be “.png”).
As default None.

	Returns (str):

	Filename of downloaded file if all was correct.

pymarketcap.pymasyncore

	
class pymarketcap.pymasyncore.AsyncPymarketcap(queue_size=10, progress_bar=True, consumers=10, timeout=15, logger=<Logger /pymarketcap/pymasyncore.py (WARNING)>, debug=False, sync=<pymarketcap.core.Pymarketcap object>, **kwargs)

	Bases: aiohttp.client.ClientSession

Asynchronous scraper for coinmarketcap.com

	Parameters

	
	queue_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of maximum simultanenous
get requests performing together in methods
involving several requests. As default 10.

	progress_bar (bool [https://docs.python.org/3/library/functions.html#bool]) – Select True or False if you
want to show a progress bar in methods that involve
processing of several requests (requires tqdm
module). As default, True.

	consumers (int [https://docs.python.org/3/library/functions.html#int]) – Number of consumers resolving HTTP
requests from an internal
asyncio.Queue.
As default, 10.

	timeout (int/float, optional) – Limit max time
waiting for a response. As default, 15.

	logger (logging.logger) – As default is a logger
with a StreamHandler.

	debug (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the logger
level will be setted as DEBUG.
As default False.

	sync (object [https://docs.python.org/3/library/functions.html#object], optional) – Synchronous version instance
of pymarketcap. As default
pymarketcap.core.Pymarketcap

	**kwargs – arguments that corresponds to the
aiohttp.client.ClientSession
parent class.

Note

All scraper methods described in Pymarketcap object and almost all the properties also exists in AsyncPymarketcap.

	
every_currency(currencies=None, convert='USD', consumers=None)

	Return general data from every currency in coinmarketcap
passing a list of currencies as first parameter.
As default returns data for all currencies.

	Parameters

	
	currencies (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Iterator with all the
currencies that you want to retrieve.
As default None (pymarketcap.Pymarketcap.coins()
will be used in that case).

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Convert prices in response
between “USD” and BTC. As default "USD".

	consumers (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of consumers
processing the requests simultaneously.
As default None
(see pymarketcap.AsyncPymarketcap.consumers).

Returns (list): Data for all currencies.

	
every_markets(currencies=None, convert='USD', consumers=None)

	Returns markets data from every currency in coinmarketcap
passing a list of currencies as first parameter.
As default returns data for all currencies.

	Parameters

	
	currencies (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Iterator with
all the currencies that you want to retrieve.
As default None (pymarketcap.Pymarketcap.coins()
will be used in that case).

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Convert prices in
response between “USD” and BTC.
As default "USD".

	consumers (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of consumers
processing the requests simultaneously.
As default None
(see pymarketcap.AsyncPymarketcap.consumers).

	Returns (async iterator):

	Data for all currencies.

	
every_historical(currencies=None, start=datetime.datetime(2008, 8, 18, 0, 0), end=datetime.datetime(2018, 10, 29, 21, 13, 48, 319644), revert=False, consumers=None)

	Returns historical data from every currency
in coinmarketcap passing a list of currencies
as first parameter. As default returns data
for all currencies.

	Parameters

	
	currencies (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Iterator with all
the currencies that you want to retrieve.
As default None (pymarketcap.Pymarketcap.coins()
will be used in that case).

	start (date, optional) – Time to start scraping
periods as datetime.datetime type.
As default datetime(2008, 8, 18).

	end (date, optional) – Time to end scraping periods
as datetime.datetime type.
As default datetime.now().

	revert (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, return first date
first, in chronological order, otherwise returns
reversed list of periods. As default False.

	consumers (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of consumers
processing the requests simultaneously.
As default None
(see pymarketcap.AsyncPymarketcap.consumers).

	Returns (async iterator):

	Historical data for all currencies.

	
every_exchange(exchanges=None, convert='USD', consumers=None)

	Returns general data from every exchange
in coinmarketcap passing a list of exchanges
as first parameter. As default returns data
for all exchanges.

	Parameters

	
	exchanges (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Iterator with all
the exchanges that you want to retrieve.
As default None
(pymarketcap.Pymarketcap.exchange_slugs()
will be used in that case).

	convert (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Convert market_caps, prices,
volumes and percent_changes between USD and BTC.
As default "USD".

	consumers (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of consumers
processing the requests simultaneously.
As default None
(see pymarketcap.AsyncPymarketcap.consumers).

	Returns (async iterator):

	General data from all exchanges.

Note

The next method can be called also as graphs.every_currency().

	
_every_currency(currencies=None, start=None, end=None, use_auto_timeframe=False, consumers=None)

	Returns graphs data from every currency in
coinmarketcap passing a list of currencies as
first parameter. As default returns graphs data
for all currencies.

	Parameters

	
	currencies (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Iterator with all
the currencies that you want to retrieve.
As default None (pymarketcap.Pymarketcap.coins()
will be used in that case).

	start (datetime, optional) – Time to start retrieving
graphs data in datetime. As default None.

	end (datetime, optional) – Time to end retrieving
graphs data in datetime. As default None.

	use_auto_timeframe (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use auto time frames same
as fronted API. As default False

	consumers (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of consumers
processing the requests simultaneously.
As default None
(see pymarketcap.AsyncPymarketcap.consumers).

Returns (async iterator): Graphs data from all currencies.

pymarketcap.errors

Pymarketcap errors module.

	
exception pymarketcap.errors.CoinmarketcapError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Coinmarketcap base classs errors.

	
exception pymarketcap.errors.CoinmarketcapHTTPError

	Bases: pymarketcap.errors.CoinmarketcapError

Exception for catch HTTPErrors.

	
exception pymarketcap.errors.CoinmarketcapHTTPError404

	Bases: pymarketcap.errors.CoinmarketcapError

Exception for catch 404 HTTP error codes.

	
exception pymarketcap.errors.CoinmarketcapHTTPError408

	Bases: pymarketcap.errors.CoinmarketcapError

Exception for catch request timeout HTTP errors.

	
exception pymarketcap.errors.CoinmarketcapTooManyRequestsError

	Bases: pymarketcap.errors.CoinmarketcapHTTPError

Exception for catch 429 HTTP error codes.

Contributing

[image: Issues] [https://github.com/mondeja/pymarketcap/issues] [image: Percentage of issues still open] [http://isitmaintained.com/project/mondeja/pymarketcap] [image: Closed issues] [https://github.com/mondeja/pymarketcap/issues?q=is%3Aissue+is%3Aclosed]

[image: Average time solving issues] [https://github.com/mondeja/pymarketcap/issues] [image: Issues closed in] [https://github.com/mondeja/pymarketcap/issues]

[image: Contributors] [https://github.com/mondeja/pymarketcap/graphs/contributors] [image: Codetriage] [https://www.codetriage.com/mondeja/pymarketcap] [image: Last commit]

Known issues and enhacements

[image: Enhancement] [https://github.com/mondeja/pymarketcap/issues?q=is%3Aissue+is%3Aopen+label%3Aenhancement]

	Total: [image: Total bugs] [https://github.com/mondeja/pymarketcap/issues?q=is%3Aissue+is%3Aopen+label%3Abug]

	Tests: [image: Test bugs] [https://github.com/mondeja/pymarketcap/issues?q=is%3Aissue+is%3Aopen+label%3Atest_bug]

Basic guidelines

	Each new method developed needs to be accompanied with their
respective complete unittest as shown in tests/ directory.

	Each new pull request needs to be good performed. Plase, don’t make a
pull request with 4 commits for change a line in the code.

Basic benchmarking

You can test basically benchmarking of Pymarketcap class methods running
python3 bench/main.py. You can filter by name of benchmarks, change
the number of repetitions for each one or change file where
benchmarks results are stored: run python3 bench/main.py --help.

How does pymarketcap works in depth?

[image: Repo size] [image: Code size]

	Some pieces of code are precompiled before compile with Cython, so if
you see missing parts on the source code before install (like the
property method ticker_badges), understand that these are not bugs.
Run make precompile-sources to do manual code precompilation and
make restore-sources for restore souce code to original state.

	Numerical values returned by the scraper are real values with
which coinmarketcap.com [https://www.coinmarketcap.com] works, not the values displayed on their frontend (see source HTML code of the web).

Contributors

Pull requesters

	badele [https://github.com/badele]

	nkoshell [https://github.com/nkoshell]

	wilcollins [https://github.com/wilcollins]

Bug hunters

	Abolah [https://github.com/Abolah]

	badele [https://github.com/badele]

	Bragegs [https://github.com/Bragegs]

	criptonaut1357 [https://github.com/criptonaut1357]

	Prophetic-Pariah [https://github.com/Prophetic-Pariah]

	reteps [https://github.com/reteps]

	run2dev [https://github.com/run2dev]

	Wingie [https://github.com/Wingie]

Testing

[image: TravisCI] [https://travis-ci.org/mondeja/pymarketcap] [image: AppVeyor] [https://ci.appveyor.com/project/mondeja/pymarketcap]

You need to install pytest for run unittests:

pip3 install -r dev-requirements.txt

	You can run tests with pytest command:

	
	Run all unittests: pytest tests

	Run also tests for asynchronous interface: pytest tests --end2end

	Run individual tests [https://docs.pytest.org/en/latest/usage.html#specifying-tests-selecting-tests]:

	Run API tests: pytest tests/test_sync_core/test_public_api

	Run every_historical() async scraper method’s consistence: pytest tests/test_async_core/test_scraper/test_every_historical.py

Also, if your system is Unix, you can use make for run tests, install, precompile/restore source code, build and clean the whole directory (see Makefile [https://github.com/mondeja/pymarketcap/blob/master/Makefile]).

You can see online tests for Linux/Mac and Windows based systems at TravisCI and AppVeyor:

	TravisCI [https://travis-ci.org/mondeja/pymarketcap]

	AppVeyor [https://ci.appveyor.com/project/mondeja/pymarketcap]

Changelog

4.1.0 (in process)

	Some tests added which assert if a field is None between all fields methods responses (see #46 [https://github.com/mondeja/pymarketcap/issues/46]). These check if a field are not being parsed by processer.pyx regular expressions.

	New method ticker_all due to coinmarketcap API [https://coinmarketcap.com/api/] has implemented a limit of 100 for the number of currencies in /ticker/ endpoint responses. With ticker_all we can retrieve all currencies from ticker method responses.

	New parameter added use_auto_timeframe in some methods until pull request #52 [https://github.com/mondeja/pymarketcap/pull/52/commits/9dc5dba5dfabb11649bf0257d3992cefbb41d46b].

4.0.0

	Coinmarketcap API [https://coinmarketcap.com/es/api/] is updated to version 2 providing the listing endpoint [https://api.coinmarketcap.com/v2/listings/] in their API. Also, parameters like usd_market_cap have been missing and instead a quotes field list prices by currencies in responses.

	Some methods of Pymarketcap class have been deprecated: correspondences, ids_correspondences, _is_symbol, _cache_symbols_ids, _cache_exchanges_ids, symbols, coins, total_currencies, exchange_names, __exchange_names_slugs, exchange_slugs and total_exchanges.

	Next methods have been added instead: cryptocurrencies, cryptocurrency_by_field_value, cryptoexchanges, exchange_by_field_value, field_type and listings. All methods listed in previous point have been replaced by these 6 methods, simplifying the process of access to cryptocurrencies and exchanges and allowing to retrieve them through any field: name, symbol, website_slug and id (cryptocurrencies) or name, website_slug and id (exchanges).

	New method download_exchange_logo for synchronous interface.

3.9.0

	All the wrapper rewritten with Cython language.

	The data is obtained and processed by regular expressions instead of
parsing the DOM tree.

	Core functionality of the wrapper rewritten for work with libcurl
C library through a Cython wrap at compilation time.
Also, you can use the wrapper with urllib standard library only
installing by python setup.py install --no-curl.

	Tests now performed with pytest instead of standard library
unittest.

	request, lxml and bs4 dependencies removed, only
cython, gcc and libcurl required for compile the code.

	A precompiler added for insert some code and documentation hardcoded
before compile the program.

	All the data now is taken from values provided for the code that
builds coinmarketcap instead the values displayed in the frontend
page, as before. Is possible select between USD or BTC to returns
these in most methods.

	New method convert() for convert between currencies as
coinmarketcap currencies calculator: https://coinmarketcap.com/calculator/

	New method tokens() convering partially
https://coinmarketcap.com/tokens/views/all/ endpoint.

	New method currency() for get all metadata from a currency.

	New asynchronous class interface with methods for retrieve
faster long lists of exchanges or currencies: every_currency(),
every_exchange(), every_historical().

	Improvements in both speed and accuracy in exchanges and currencies
cache, from quick_search.json and quick_search_exchanges.json
files of coinmarketcap server.

3.3.0

	New method download_logo() that downloads images for all coins in
coinmarketcap in various sizes.

	New methods for retrieve info from graphs coinmarketcap internal
API: graphs.currency, graphs.global_cap and
graphs.dominance

	Some symbols recognition improvements and bugs fixed.

This proyect is originally a fork from
https://github.com/barnumbirr/coinmarketcap

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymarketcap	

 	
 	
 pymarketcap.errors	

Index

 _
 | A
 | C
 | D
 | E
 | H
 | L
 | M
 | P
 | R
 | S
 | T

_

 	
 	_currency() (pymarketcap.core.Pymarketcap method)

 	_dominance() (pymarketcap.core.Pymarketcap method)

 	
 	_every_currency() (pymarketcap.pymasyncore.AsyncPymarketcap method)

 	_global_cap() (pymarketcap.core.Pymarketcap method)

A

 	
 	AsyncPymarketcap (class in pymarketcap.pymasyncore)

C

 	
 	CoinmarketcapError

 	CoinmarketcapHTTPError

 	CoinmarketcapHTTPError404

 	CoinmarketcapHTTPError408

 	
 	CoinmarketcapTooManyRequestsError

 	convert() (pymarketcap.core.Pymarketcap method)

 	cryptocurrencies (pymarketcap.core.Pymarketcap attribute)

 	cryptoexchanges (pymarketcap.core.Pymarketcap attribute)

 	currency() (pymarketcap.core.Pymarketcap method)

D

 	
 	download_exchange_logo() (pymarketcap.core.Pymarketcap method)

 	
 	download_logo() (pymarketcap.core.Pymarketcap method)

E

 	
 	every_currency() (pymarketcap.pymasyncore.AsyncPymarketcap method)

 	every_exchange() (pymarketcap.pymasyncore.AsyncPymarketcap method)

 	every_historical() (pymarketcap.pymasyncore.AsyncPymarketcap method)

 	
 	every_markets() (pymarketcap.pymasyncore.AsyncPymarketcap method)

 	exchange() (pymarketcap.core.Pymarketcap method)

 	exchanges() (pymarketcap.core.Pymarketcap method)

H

 	
 	historical() (pymarketcap.core.Pymarketcap method)

L

 	
 	listings() (pymarketcap.core.Pymarketcap method)

M

 	
 	markets() (pymarketcap.core.Pymarketcap method)

P

 	
 	Pymarketcap (class in pymarketcap.core)

 	
 	pymarketcap.errors (module)

R

 	
 	ranks() (pymarketcap.core.Pymarketcap method)

 	
 	recently() (pymarketcap.core.Pymarketcap method)

S

 	
 	stats() (pymarketcap.core.Pymarketcap method)

T

 	
 	ticker() (pymarketcap.core.Pymarketcap method)

 	
 	ticker_badges (pymarketcap.core.Pymarketcap attribute)

 	tokens() (pymarketcap.core.Pymarketcap method)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Pymarketcap’s documentation

 		
 Install

 		
 From Pypi

 		
 From source

 		
 Known install issues

 		
 Usage

 		
 Basic examples

 		
 Reference

 		
 pymarketcap.core

 		
 pymarketcap.pymasyncore

 		
 pymarketcap.errors

 		
 Contributing

 		
 Known issues and enhacements

 		
 Basic guidelines

 		
 Basic benchmarking

 		
 How does pymarketcap works in depth?

 		
 Contributors

 		
 Pull requesters

 		
 Bug hunters

 		
 Testing

 		
 Changelog

 		
 4.1.0 (in process)

 		
 4.0.0

 		
 3.9.0

 		
 3.3.0

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

